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“If the Geologic Model is wrong, then neither the Ground Model
nor the Geotechnical Model can be correct.” --- Keaton (2013)
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Hoek and Bray (1981) limit equilibrium model:

_ cA+ [Wcos(n) — U — Vsin(n) + Tcos(0)] tan ¢

£ Wsin(n) + V cos(n) — T sin(0)
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Uncertainties of geological model are poorly studied,
not to say the reliability-based design!!
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Uncertainty of geotechnical properties:
Slope stability as an example
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Failure probability of a slope

Rosenblueth point estimation method (Rosenblueth 1975)

« Two parameters: C., C. ¢ ¢, ; /o a /'\\ _
« Mean value of FS (factor of safety) S AT & N
F.Sl|avg|=P, ,F.S(C,,¢,)+P, FS(C,,4 )+P  FS(C_,¢,)+P _F.S(C_,¢)

=1+ p, ) &P _=(U-p, )I4P, =(U-p, )I4P _=QU+p, )4

p.s =—0.5  correlation coefficient of cohesion and friction angle

o Standard deviation of the FS  5(y) = \/E[y E[y])
— T~

E[y*]=P,,FS%++P_FS%_ +P_ FS°,+P_FS°_ E[y] = F.S. [avg]
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Uncertainty characterization of geological, ground, geotechnical models
uncertainty; Impact of uncertainties, Value of uncertainty reduction

Contents lists available at ScienceDirect

Engineering Geology

journal homepage: www.elsevier.com/locate/enggeo

Probabilistic methods for unified treatment of geotechnical and geological
uncertainties in a geotechnical analysis

C. Hsein Juang™", Jie Zhang™*, Mengfen Shen", Jinzheng Hu"

* Departmnet of Civil Engineering, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan City 320, Taiwan

P Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

¢ Department of Geotechnical Engineering, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, 1239 Siping Road,
Shanghai 200092, China

4 College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 210014, China




Impact of geological, ground, and geotechnical
models uncertainty: infinite slope

e+ y(h=h,)+(¥e —7u)h, Jcos® Stan g

0)= - F-=0(0)+& Wu & Abdel-Latif (2000)

9(9) [y(h=h,)+7h, [sinscoss > =9(0)
® Geological model uncertainties:

® h Reliability analysis: First

o h, Order Reliability Method
® Ground model uncertainties: (FORM)

®c Calculate the reliability

® ¢ index and failure

® Geotechnical model uncertainties: probability

® Model error ¢



Reliability index and failure probability

C D E F G H 1 K L. M N O
3
4 Deterministic variables Performance function Reliability analysis
5 5O hw(m) [y (kNm’) | y (kKNm’) |y, (KN/m’) g0 | F, Fi-1 B Py
6 35 1.825 19 17 9.8 1.000 1 -6LE-09 | 1.841 0.033
7
8 Random variables R,
9 ¢ (kPa) o (°) m h (m) & 1 0 0 0 0
10 X 7.572 36.049 0.525 3.476 0 0 1 0 0 0
11 L 10 38 0.5 3 0.02 0 0 1 0 0
12 T, 2 2 0.05 0.6 0.07 0 0 0 1 0
13 y* | -1.214 -0.976 0.501 0.793 -0.286 0 0 0 0 1
14 Notes: (1)This spreadsheet calculates the reliability index of the mfinite slope. (2)The setting in Solver is "minmmize N6
12 by changing values in cells E13:113, subjected to M6 = 0"




Decision tree to evaluate the value of monitoring
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Geological model uncertainties are critical...

How to evaluate the GM uncertainty and
uncertainty propagation of prediction?
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(a) Some potential misinterpretations of geology of (b) from borehole evidence

(after Fookes, 1997)
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Quantify stratigraphic uncertainties: Markov random field
4 possible GM Source: IRFEHE A , 2020
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Pile location Variability of layer thickness
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Uncertainty of liquefaction potential index (LPI) due to
geological model uncertainty
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Dip slope failure probability: influence of uncertainty of
the orientation of bedding plane

- A+ [Wcos(ny) — U —Vsin(n) + T cos(0)] tan ¢
B W sin(n) + V cos(n) — T sin(0)

3 Hoek and Bray (1981) limit equilibrium model: FS
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Naftai North landslide in Australia
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» Stochastic modelling is the only way to handle the
geological model uncertainty?

b) Type 2: Uncertainty of interpolation and extrapolation away from known points

Information entropy
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Engineering Geology: Fundamental Input or Random Variable?
Jeffrey R. Keaton', P.E., P.G., F.ASCE

'Geotechnical Practice Leader, AMEC, 6001 Rickenbacker Road, Los Angeles, CA 90040;
jeff.keaton@amec.com
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Much relevant geologic information is nonrandom (e.g., stratlgraphy

..If geologists do not provide relevant guidance on
geologically sensible subdivision of formations,
then the engineer will be forced to treat geology as a
completely random or unnecessary variable and rely
on quantltatlve field and laboratory test results as a
g R g e surrogate for geology.
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Top 1. “Mona Lisa”
(Leonardo da Vinci)

Top 6. 'The Kiss'
(Gustav Klimt)




e
The geological knowledge can reduce the GM uncertainty
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B B AR - Exploration Versus Investigation

Exploration Versus Investigation

It 1s common for engineers and geologists to use the term “exploratory” for geotechnical
borings or subsurface investigations. The FHWA guidance (Mayne et al., 2002) uses “subsurface
investigation” 1n 1ts title, but also uses “subsurface exploration” in a first-order heading.

“Exploration” refers to the process of searching for the purpose of discovery; the term implies
lack of expectation of what might be discovered.

USACE (2001): ...subsurface investigations should begin only after a geologic model is
constructed. ...geotechnical borings should be drilled at locations that are useful for testing
and refining the geologic model hypotheses...



R. E. Goodman, 2003, Karl Terzaghi and engineering geology,
In Geotechnical Engineering, Ho & Li (eds)

 “In order to get a maximum of information out of a
minimum amount of drilling and digging” he wrote In
1928, “it Is first of all necessary to get a clear conception of
the geological history of the dam site. If this history of a
locality Is known, a tentative geological profile can be
constructed.”

.. If you do not know what vou should be looking for in a site investigation,

you are not likely to find much of value’
(Glossop 1968)



R. E. Goodman, 2003, Karl Terzaghi and engineering geology,
In Geotechnical Engineering, Ho & Li (eds)

e ...soll mechanics and engineering geology “supplement
each other”.

* “In my own practice [which then covered half a century and four continents], |
have never encountered a major engineering problem which
could be solved either by geology or by soil mechanics
alone. The solution always required both domains”.*

4 From the opening lecture for Engineering Geology by Karl Terzaghi at Harvard Univ., reprinted by Toshinobu Akagi, in his
article * | can hear it now Terzaghi and Peck”, Proceedings of the Conference on Developments in Geotechnical
Engineering, 27-30 November 2000, Bangkok, Tailand, pp.401-405.
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Incorporating the geological knowledge into ground
model and geotechnical model.

R. E. Goodman, 2003, Karl Terzaghi and engineering geology,
iIn Geotechnical Engineering, Ho & Li (eds)

Terzaghi practiced engineering geology not as a professional geologist but
as civil engineer who took his responsibilities seriously and saw geologic

Investigations and geologic thinking as very necessary steps in achieving
wise engineering solutions.

: , Civil Engineer
Engineering

Geologist

1153459 ww.fntusear[:h.-::um



R. E. Goodman, 2003, Karl Terzaghi and engineering geology,
In Geotechnical Engineering, Ho & Li (eds)

« He warned that unforeseen structural, morphological, or
hydrological details might otherwise endanger a design.

 Afine observer of nature, he tried to understand the geology of
his sites and became an artist in adjusting his design to
geological realities and uncertainties.




After almost one century...

How Do Engineers Use Geologic Maps? --- Keaton (2013)

Traditional geologic maps tend to be used by engineers in one of three
ways:

1. Geologic boundaries are accepted as deterministic truth;

geologic units guide geotechnical characterization based on
subsurface data and laboratory test results.
2. The overall range of geologic conditions on a site is estimated and

somehow applied to a site as a Single random variable
with design dominated by quantitative geotechnical 24
data.

3. The geology Is ignored* and quantitative subsurface
geotechnical data are used as a surrogate for stratigraphy. (*The
geology is neatly tucked away in an appendix to document that it

L ———
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Engineer and geologist on their way to a field site. The engineer is frustrated at not being able
to get a straight answer from the geologist. The engineer driving the car sees an isolated,
brown cow is standing. The engineer realizes that this setting provides an opportunity to ask
the geologist a question so simple that the geologist might give a straight answer.

« Engineer: .“l am going to ask you a simple question about
that cow in the pasture ahead..”

 Geologist: .“Okay..”

 Engineer: .“What color is that cow?.”  _______

 Geologist: .“The color of that cow looks Ilkell_()_\ﬁFj_Sﬂ v

« Engineer: .*What?!.”
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Communications between Geologists and Engineers!

Engineering Geology: Fundamental Input or Random Variable?
Jeffrey R. Keaton', P.E., P.G., F.ASCE
...Geologists and engineers view the world in complementary but

different ways. Science seeks to explain all observed details,

whereas engineering seeks to design with specific objectives and
multiple constraints.

Table 1. Selected contrasting elements of science and engineering.

Geological Science Engineering Design

Qualitative, observational Quantitative, data-driven

Largely interpretive Focused on specific design objectives
Site viewed as part of geologic region Site viewed as discrete location

Seeks to explain geologic details Focused on multiple project constraints
Seeks to predict distribution of Seeks to satisfy specific design
formations requirements




3th B B A

» Terzaghi (1929) realized how important it was to .“start with a clear conception of
the physical factors which are likely to endanger.” a project and then .“translate the
terms of the geologist into terms of physics.”. The results of these two elements,
conception and translation, essentially comprise a Geologic Model and perhaps a

Ground Model, also. The .“practical conclusions.” that must be drawn can be
associated with the Geotechnical Model.
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» Varnes (1974, p. 42) recognized that .“As computer technology becomes increasingly employed in
geologic science and operated by specialized personnel, we may find that if the practicing field
professional fails to define both his [or her] words and the concepts they represent, then they may,
through necessity, be defined by people whose principal business is the processing of data..”
Similarly, engineering geologists must transform geologic maps to quantify uncertainty and variability
or risk being marginalized by computer scientists and statisticians who will translate the geology
using random field theory without knowledge of geologic principles.
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Conclusions
Lumb (1972 quoted in Kulhawy, 2010) stated: | = [

“Ilgnorance of soil behaviour is
always regrettable but not necessarily
reprehensible, provided that ignorance is
recognised and advice sought where
necessary, but ignorance of being
ignorant can no longer be condoned.”

_ _ SOCRATES
The same can be said for ignorance of

engineering geology.
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Engineering Geology: Fundamental Input or Random Variable?

Jeffrey R. Keaton', P.E., P.G., F.ASCE

!Geotechnical Practice Leader, AMEC, 6001 Rickenbacker Road, Los Angeles, CA 90040;
jeff.keaton@amec.com

ABSTRACT: Geologists and engineers view the world 1in complementary but different ways.
Science seeks to explain all observed details, whereas engineering seeks to design with specific
objectives and multiple constraints. National guidance in the United States calls for geotechnical
site investigations to be performed by geotechnical engineers and engineering geologists. Site
characterization should start with Geologic Models which form the basis for Ground Models
(Geologic Models with engineering parameters) and Geotechnical Models (Ground Models with
predicted performance based on design parameters). If the Geologic Model is wrong, then neither
the Ground Model nor the Geotechnical Model can be correct. Fundamental geologic variability
makes some details unforeseeable. Insufficient geotechnical investigations, faulty interpretations,
or failure to portray results understandably contribute to inappropriate designs or failures. If the
geologist does not interpret the geology and explain it clearly, then the engineer will be forced to
mterpret it or ignore it. Incomplete or inaccurate geotechnical site characterization can lead to
selection of mcorrect models, geotechnical properties, and design values. Furthermore, project
managers responsible only for design and construction may view geologic site characterization as
extra cost if benefits result in improved life-cycle reliability or reduced maintenance costs but do
not improve design or construction.
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Geological model uncertainty

Geology for Engineers: the Geological Model, Prediction and Performance

P. G. Fookes .. If you do not know what vou should be looking for in a site investigation,

, you are not likely to find much of value’
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Richard P. Feynman: “...Scientific knowledge iIs a body of
statements of varying degrees of certainty — some most
unsure, some nearly sure, but none absolutely certain. ...”

“The scientist has a lot of experience with ignorance and doubt
and uncertainty, and this experience is of very great importance,
I think. When a scientist doesn’t know the answer to a problem,
he is ignorant. When he has a hunch as to what the result is, he is
uncertain. And when he is pretty damn sure of what the result is
going to be, he is still in some doubt. We have found it of
paramount importance that in order to progress, we must
recognize our ignorance and leave room for doubt. Scientific
knowledge is a body of statements of varving degrees of certainty
— some most unsure, some nearly sure, but none absolutely
certain. Now, we scientists are used to this, and we take it for
granted that it is perfectly consistent to be unsure, that it is possible to live and not
know. But I don’t know whether everyone realizes this is true. Our freedom to doubt
was born out of a struggle against authority in the early days of science. It was a very
deep and strong struggle: permit us to question — to doubt — to not be sure. I think
that it is important that we do not forget this struggle and thus perhaps lose what we
have gained.”

— Richard P. Feynman

https://WWW.goodreads.com/quotes/899021-the-scientist-has-a-lot-of-experience-with-ignorance-and
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